Math 2 Imaginary Numbers

Sep 13-9:03 AM

II. Rational vs. Irrational

Rational Numbers:

These are numbers such as $\frac{2}{7}$, $\frac{3}{4}$, and -9 that can be written as the ratio of two integers. When written as decimals, rational numbers terminate or repeat.

I. The Complex Number Tree Complex Numbers Imaginary Numbers Irrational Numbers Negative Integers Whole Numbers Whole Numbers

Sep 13-9:03 AM

Irrational Numbers:

Real numbers that are not rational, such as $\sqrt{2}$ and π . When written as decimals, irrational numbers do not terminate and do not repeat.

Sep 13-9:03 AM

Sep 13-9:04 AM

Identify each question as Rational or Irrational.

- 1. $\sqrt{11}$
- 2. $\sqrt{25}$
- 3. $0.6\overline{6}$
- 4. $\sqrt{5}$

Sep 13-9:04 AM

Imaginary Numbers

$$\sqrt{-36}$$

$$\sqrt{-1} = i$$

$$i =$$

$$i^2 =$$

$$i^3 =$$

$$i^4 =$$

Sep 20-9:53 PM

III. Complex Numbers

All numbers are complex.

There is a special subset of them that we call imaginary.

Imaginary numbers solve the issue of negative numbers under a square root.

Sep 13-9:05 AM

 $\sqrt{-25}$

 $\sqrt{-45}$

 $\sqrt{-8}$

Sep 20-9:53 PM

"Pop out the *i's* before you multiply or simplify."

$$\sqrt{-2}\cdot\sqrt{-8}$$
 $\sqrt{-5}\cdot\sqrt{-15}$

$$\sqrt{-5} \cdot \sqrt{-15}$$

$$\sqrt{-6}\cdot\sqrt{3}$$

$$\sqrt{-6} \cdot \sqrt{3}$$
 $(-2\sqrt{-8})(3\sqrt{-2})$

Sep 20-9:53 PM

IV. Operations with Complex Numbers

Complex Number

Write each number in complex number form.

May 13-12:03 PM

$$(6\sqrt{-24})(-3\sqrt{6})$$
 $\frac{36i}{4i}$

$$(-5i)^2$$

Sep 20-9:53 PM

Adding and Subtracting, we can only add the parts that are alike:

Examples:

1.
$$(11+5i)+(3+2i)$$

2.
$$(18-3i)-(12-i)$$

Multiplying, we treat them just like a polynomial! Be sure to clean up any imaginary numbers raised to a power.

1. (10+7i)(2+3i)

2. (5-6i)(9+3i)

Sep 13-9:10 AM

Sep 13-9:13 AM

You Try!

1) (4+3i)+(-6-2i)

2) (-4-2i)-(-6+8i)

3) (7-7i)-(1-7i)

4) (-7i)(5i)(5+3i)

5) (-8-4i)(6+5i)

6) $(1-3i)^2$

Sep 13-9:10 AM

Using Imaginary #'s to Solve!

- 1. x²+36=0
- 2. 4x²+9=0
- 3. $3x^2 + 10 = -6x^2 + 9$

Sep 13-9:13 AM